4 research outputs found

    Automatisation du traitement d'images acquises par IRM de diffusion et techniques d'acquisition avancées avec application sur le primate

    Get PDF
    L'imagerie par rĂ©sonance magnĂ©tique de diffusison (IRMd) est une technologie d'imagerie mĂ©dicale non-invasive permettant de cartographier la structure axonale du cerveau et d'en extraire des mesures d'orientation et d'intĂ©gritĂ© de la matiĂšre blanche. MalgrĂ© l'intĂ©rĂȘt que connaĂźt le domaine de la recherche en IRMd depuis presque 40 ans, un faible pourcentage des techniques modernes dĂ©veloppĂ©es sont utilisĂ©es au niveau clinique et hospitalier. Cela vient en grande partie du fait que la communautĂ© connaĂźt un grand problĂšme de variabilitĂ© et de validation, rendant la mise en application des technologies ardue et risquĂ©e. Pour valider l'exĂ©cution d'un algorithme ou la validitĂ© d'une thĂ©orie, comme aucune mesure Ă©talon n'existe en IRMd, il est usuel de chercher Ă  reproduire les rĂ©sultats observĂ©s chez les humains dans le cerveau d'animaux similaires. Pour cela, les primates sont particuliĂšrement intĂ©ressants, puisque la morphologie de leur cerveau est trĂšs proche de celle de l'humain. Cependant, peu d'outils de traitement automatisĂ©s dans le domaine de l'IRMd dĂ©veloppĂ©s pour l'humain s'exĂ©cutent correctement sur les images de petit animal ou de primate. Les images sont acquises Ă  des rĂ©solutions spatiales plus fines et angulaires plus riches et souffrent gĂ©nĂ©ralement d'artĂ©facts plus intenses, requĂ©rant plus d'itĂ©rations pour converger et une configuration fine des paramĂštres d'exĂ©cutions. Dans ce mĂ©moire, nous prĂ©sentons un nouvel outil d'automatisation de traitement des donnĂ©es d'IRMd, pouvant ĂȘtre utilisĂ© pour produire des modĂšles et des mesures de diffusion. Nous exposons son implĂ©mentation modulaire permettant une maintenance simple des dĂ©pendances, modules et algorithmes et une configuration Ă©tendue des Ă©tapes de traitement. Nous dĂ©montrons la robustesse et la reproducibilitĂ© de son exĂ©cution sur des donnĂ©es d'IRMd haute rĂ©solution. Nous prĂ©sentons aussi une Ă©tude de la variabilitĂ© des donnĂ©es de diffusion de primates contenues dans la base de donnĂ©es PRIME-DE

    Tractostorm 2 : Optimizing tractography dissection reproducibility with segmentation protocol dissemination

    Get PDF
    The segmentation of brain structures is a key component of many neuroimaging studies. Consistent anatomical definitions are crucial to ensure consensus on the position and shape of brain structures, but segmentations are prone to variation in their interpretation and execution. White-matter (WM) pathways are global structures of the brain defined by local landmarks, which leads to anatomical definitions being difficult to convey, learn, or teach. Moreover, the complex shape of WM pathways and their representation using tractography (streamlines) make the design and evaluation of dissection protocols difficult and time-consuming. The first iteration of Tractostorm quantified the variability of a pyramidal tract dissection protocol and compared results between experts in neuroanatomy and nonexperts. Despite virtual dissection being used for decades, in-depth investigations of how learning or practicing such protocols impact dissection results are nonexistent. To begin to fill the gap, we evaluate an online educational tractography course and investigate the impact learning and practicing a dissection protocol has on interrater (groupwise) reproducibility. To generate the required data to quantify reproducibility across raters and time, 20 independent raters performed dissections of three bundles of interest on five Human Connectome Project subjects, each with four timepoints. Our investigation shows that the dissection protocol in conjunction with an online course achieves a high level of reproducibility (between 0.85 and 0.90 for the voxel-based Dice score) for the three bundles of interest and remains stable over time (repetition of the protocol). Suggesting that once raters are familiar with the software and tasks at hand, their interpretation and execution at the group level do not drastically vary. When compared to previous work that used a different method of communication for the protocol, our results show that incorporating a virtual educational session increased reproducibility. Insights from this work may be used to improve the future design of WM pathway dissection protocols and to further inform neuroanatomical definitions.Peer reviewe

    Magic DIAMOND : Multi-fascicle diffusion compartment imaging with tensor distribution modeling and tensor-valued diffusion encoding

    No full text
    Diffusion tensor imaging provides increased sensitivity to microstructural tissue changes compared to conventional anatomical imaging but also presents limited specificity. To tackle this problem, the DIAMOND model subdivides the voxel content into diffusion compartments and draws from diffusion-weighted data to estimate compartmental non-central matrix-variate Gamma distributions of diffusion tensors. It models each sub-voxel fascicle separately, resolving crossing white-matter pathways and allowing for a fascicle-element (fixel) based analysis of microstructural features. Alternatively, specific features of the intra-voxel diffusion tensor distribution can be selectively measured using tensor-valued diffusion-weighted acquisition schemes. However, the impact of such schemes on estimating brain microstructural features has only been studied in a handful of parametric single-fascicle models. In this work, we derive a general Laplace transform for the non-central matrix-variate Gamma distribution, which enables the extension of DIAMOND to tensor-valued encoded data. We then evaluate this “Magic DIAMOND” model in silico and in vivo on various combinations of tensor-valued encoded data. Assessing uncertainty on parameter estimation via stratified bootstrap, we investigate both voxel-based and fixel-based metrics by carrying out multi-peak tractography. We demonstrate using in silico evaluations that tensor-valued diffusion encoding significantly improves Magic DIAMOND's accuracy. Most importantly, we show in vivo that our estimated metrics can be robustly mapped along tracks across regions of fiber crossing, which opens new perspectives for tractometry and microstructure mapping along specific white-matter tracts
    corecore